If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x + 1 + 2(1 + 3x2) = (1 + -1x) + 4(x2 + 1) 3x + 1 + (1 * 2 + 3x2 * 2) = (1 + -1x) + 4(x2 + 1) 3x + 1 + (2 + 6x2) = (1 + -1x) + 4(x2 + 1) Reorder the terms: 1 + 2 + 3x + 6x2 = (1 + -1x) + 4(x2 + 1) Combine like terms: 1 + 2 = 3 3 + 3x + 6x2 = (1 + -1x) + 4(x2 + 1) Remove parenthesis around (1 + -1x) 3 + 3x + 6x2 = 1 + -1x + 4(x2 + 1) Reorder the terms: 3 + 3x + 6x2 = 1 + -1x + 4(1 + x2) 3 + 3x + 6x2 = 1 + -1x + (1 * 4 + x2 * 4) 3 + 3x + 6x2 = 1 + -1x + (4 + 4x2) Reorder the terms: 3 + 3x + 6x2 = 1 + 4 + -1x + 4x2 Combine like terms: 1 + 4 = 5 3 + 3x + 6x2 = 5 + -1x + 4x2 Solving 3 + 3x + 6x2 = 5 + -1x + 4x2 Solving for variable 'x'. Reorder the terms: 3 + -5 + 3x + x + 6x2 + -4x2 = 5 + -1x + 4x2 + -5 + x + -4x2 Combine like terms: 3 + -5 = -2 -2 + 3x + x + 6x2 + -4x2 = 5 + -1x + 4x2 + -5 + x + -4x2 Combine like terms: 3x + x = 4x -2 + 4x + 6x2 + -4x2 = 5 + -1x + 4x2 + -5 + x + -4x2 Combine like terms: 6x2 + -4x2 = 2x2 -2 + 4x + 2x2 = 5 + -1x + 4x2 + -5 + x + -4x2 Reorder the terms: -2 + 4x + 2x2 = 5 + -5 + -1x + x + 4x2 + -4x2 Combine like terms: 5 + -5 = 0 -2 + 4x + 2x2 = 0 + -1x + x + 4x2 + -4x2 -2 + 4x + 2x2 = -1x + x + 4x2 + -4x2 Combine like terms: -1x + x = 0 -2 + 4x + 2x2 = 0 + 4x2 + -4x2 -2 + 4x + 2x2 = 4x2 + -4x2 Combine like terms: 4x2 + -4x2 = 0 -2 + 4x + 2x2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-1 + 2x + x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-1 + 2x + x2)' equal to zero and attempt to solve: Simplifying -1 + 2x + x2 = 0 Solving -1 + 2x + x2 = 0 Begin completing the square. Move the constant term to the right: Add '1' to each side of the equation. -1 + 2x + 1 + x2 = 0 + 1 Reorder the terms: -1 + 1 + 2x + x2 = 0 + 1 Combine like terms: -1 + 1 = 0 0 + 2x + x2 = 0 + 1 2x + x2 = 0 + 1 Combine like terms: 0 + 1 = 1 2x + x2 = 1 The x term is 2x. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2x + 1 + x2 = 1 + 1 Reorder the terms: 1 + 2x + x2 = 1 + 1 Combine like terms: 1 + 1 = 2 1 + 2x + x2 = 2 Factor a perfect square on the left side: (x + 1)(x + 1) = 2 Calculate the square root of the right side: 1.414213562 Break this problem into two subproblems by setting (x + 1) equal to 1.414213562 and -1.414213562.Subproblem 1
x + 1 = 1.414213562 Simplifying x + 1 = 1.414213562 Reorder the terms: 1 + x = 1.414213562 Solving 1 + x = 1.414213562 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 1.414213562 + -1 Combine like terms: 1 + -1 = 0 0 + x = 1.414213562 + -1 x = 1.414213562 + -1 Combine like terms: 1.414213562 + -1 = 0.414213562 x = 0.414213562 Simplifying x = 0.414213562Subproblem 2
x + 1 = -1.414213562 Simplifying x + 1 = -1.414213562 Reorder the terms: 1 + x = -1.414213562 Solving 1 + x = -1.414213562 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -1.414213562 + -1 Combine like terms: 1 + -1 = 0 0 + x = -1.414213562 + -1 x = -1.414213562 + -1 Combine like terms: -1.414213562 + -1 = -2.414213562 x = -2.414213562 Simplifying x = -2.414213562Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.414213562, -2.414213562}Solution
x = {0.414213562, -2.414213562}
| 8x^6+7x^3+1= | | (x+8)-14= | | 5=(z+3) | | 3/4(12x-8)=24 | | 30k+80=20k+110 | | x^3+900=0 | | 17=2x+7+6 | | 1/4x^2+1/4x-5=0 | | 5(2n-4)=2(3n-1)+6n | | -7x-3+4=-20 | | -3y+72=38-y | | 16-n=-73 | | -24=-9+4(a+6) | | X^2-6x+p=0 | | 3-4x+1=8x-10 | | -3(x+7)+6x=29 | | 1/2x=6/11 | | 14=x+55 | | X/2+12=75 | | 7(x-2)=14x+28 | | 9x-110=8y | | -9.1=x/5.9 | | 12x-48=12x+18 | | 2p+5-r=q | | 2*ln(2x)-6*ln(2)=ln(x-3) | | -6z-4=-7z-5 | | 4/5y=25 | | 3x+15-8x-24=20 | | 5n-9=3n+5 | | -4r=-4r | | 5-x/3=x/6 | | 23.99=x+1/2x+y |